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Several species mitigate relationships according to their conspecifics’ para-
site status. Yet, this defence strategy comes with the costs of depriving
individuals from valuable social bonds. Animals therefore face a trade-off
between the costs of pathogen exposure and the benefits of social relation-
ships. According to the models of social evolution, social bonds are highly
kin-biased. However, whether kinship mitigates social avoidance of conta-
gious individuals has never been tested so far. Here, we build on previous
research to demonstrate that mandrills (Mandrillus sphinx) modulate social
avoidance of contagious individuals according to kinship: individuals do
not avoid grooming their close maternal kin when contagious (parasitized
with oro-faecally transmitted protozoa), although they do for more distant
or non-kin. While individuals’ parasite status has seldom been considered
as a trait impacting social relationships in animals, this study goes a step
beyond by showing that kinship balances the effect of health status on
social behaviour in a non-human primate.
1. Introduction
The evolution from a solitary lifestyle to life in permanent groups occurred
independently in numerous taxa [1]. Living in groups entails, however, a
major parasite cost [2] because sociality involves promiscuity between group-
mates [3]. This transition has therefore driven the evolution of various
defence mechanisms [4]. In particular, individuals able to detect the signs of
infection and to behave accordingly should be favoured because one of the
major sources of parasite transmission comes from contagious conspecifics
[3]. As such, parasite-free bullfrog tadpoles (Rana catesbeiana) do not swim
with parasitized conspecifics [5], social lobsters (Panulirus argus) do not share
dens with conspecifics infected by a lethal virus [6], and olive baboons (Papio
anubis) avoid mating with partners infected by a sexually transmitted virus
[7]. In a recent study, we showed that wild mandrills avoid grooming conspe-
cifics infected with gastro-intestinal protozoa but grooming rates return to
normalcy following treatment of these infected groupmates [8]. Protozoa infect-
ing mandrills are known to cause diverse symptoms in other primates; for
instance, Balantidium coli and Entamoeba histolytica may cause fatal dysentery
syndromes and amoebiasis [9–11]. This behavioural defence strategy may, how-
ever, incur costs because it deprives individuals from valuable social
interactions. Decision to avoid contagious conspecifics results therefore from
a cost–benefit trade-off depending on the probability of becoming infected,
the fatality rate of the disease, the nature of social contact, the individual’s cur-
rent need for social interaction and the degree of genetic relatedness. Recent
mathematical modelling showed that mildly virulent pathogens generate selec-
tion for flexible strategies of social avoidance depending on kinship. Under this
scenario, the benefits of socializing with close kin would outweigh the costs of
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exposure to pathogens and individuals should avoid only
infected groupmates that are distantly related or non-kin
[12]. Whether kinship modulates the social avoidance of con-
tagious individuals remains, however, to be tested empirically.

In this study, we build on our previous research to test
whether mandrills modulate the social avoidance of group-
mates infected with gastro-intestinal protozoa as a function
of kinship. We have recently demonstrated that mandrills
avoid grooming, but not being groomed by, contagious
groupmates infected with oro-faecally transmitted protozoa
[8]. This strategy probably decreases parasite exposure
because infected mandrills harbour transmissible stages of
protozoa on their fur that could be ingested during grooming
[8]. Grooming is, however, a fundamental and valuable com-
ponent of primate sociality [13]: it serves several important
social functions including the maintenance of group cohesion
and it may also buffer within-group competition [14]. In
addition, grooming has hygienic functions [15,16], destresses
both groomers and groomees [14], decreases heart rate [17]
and induces the release of pleasure hormones [18]. While
grooming may increase parasite exposure, the social and
physiological benefits of grooming may therefore decrease
disease susceptibility under some circumstances [19]. Because
of the benefits associated with grooming, kin selection
models of social evolution predict individuals to groom
their kin in preference to non-kin [20,21]. Consistent with
this theory, in most mammal species, grooming patterns are
highly kin-biased [22]. Here, we predict that individuals
should avoid infected non-kin but still provide care (i.e.
grooming) to contagious kin. Using long-term data collected
on a wild group of mandrills from Gabon, we matched
grooming time received and groomee’s protozoa status to
(i) test whether contagious groomees were similarly avoided
by all kin and (ii) identify which kin took the risk of groom-
ing highly contagious partners.
2. Material and methods
(a) Study population
In May 2019, the free-ranging population of mandrills comprised
approximately 220 habituated individuals living in a private park
(Lékédi Park, Bakoumba, Gabon). This population was founded
in 2002 when 36 individuals were released from a captive popu-
lation into the wild (see for details: [23]). Starting in 2003, wild
males joined the group and reproduced with females born in cap-
tivity. In 2006, 29 other captive individuals were released into the
initial group. In January 2012, a long-term field project was estab-
lished to study this population ofmandrills, consisting at that time
of more than 80% of animals born in the wild (‘Mandrillus Pro-
ject’: www.projetmandrillus.com). Because we conduct daily
monitoring, more than 200 individuals are recognized and have
been followed throughout the years. The present study includes
71 individuals, 57 of them were born in the wild.

(b) Behavioural observations
During 54 months (October 2012–March 2017), we collected
1557 h of behavioural observation from 71 individually recog-
nized mandrills (29 males, 42 females). We did not consider
sub-adult and adult males (greater than 7 years old) because
female mandrills are philopatric and males are only temporary
residents of the social group. They have therefore no kin in the
group, except their own offspring that are generally still infants
if co-residing with their father. We usually do not manage to col-
lect faecal samples from infants. Trained observers, blind to the
protozoa status of the studied animals, performed behavioural
observations using 5-min focal sampling [24]. All social inter-
actions including grooming time were recorded. In this study,
we matched an individual’s rate of grooming received with groo-
mee’s parasitological status. Monthly dominance ranks were
evaluated for each sex, using the outcomes of approach–avoidance
interactions and calculated using normalized David’s score. We
divided adult females into three classes of rank of similar size
across the entire study period (high-ranking, medium-ranking,
low-ranking). We attributed their mother’s rank to the males
below 5 years of age. Males between 5 and 7 years of age were
all classified as low-ranking.

(c) Parasitological analyses
We performed qualitative coprological analyses using a sedimen-
tation protocol on faecal samples collected opportunistically
since 2012 whenever a known animal was seen defaecating
(see for details: [25]). The study group is known to be infected
by seven different protozoa taxa: Balantidium coli, Coccidian sp.,
Endolimax nana, Entamoeba coli, Entamoeba hartmanni, Entamoeba
histolytica/dispar complex and Pseudolimax butschlii. Over the
study period, we collected 860 faecal samples from 60 groomees
(39 females, 21 males; mean number per individual ± s.d. = 23.0 ±
13.6). We evaluated monthly protozoa richness of groomees for
507 groomee.month, by calculating the average number of proto-
zoa taxa retrieved from all samples collected from one groomee
in a given month (mean number per individual.month ± s.d. =
1.6 ± 1.3).

(d) Genetic analyses
Sixty-five individuals were trapped at least once using blowpipe
intramuscular injections of anaesthetics [26,27] allowing the col-
lection of blood samples. DNA extractions from the buffy coat
were performed using QIAamp DNA Blood Mini Kits (Hilden,
Germany) and microsatellite genotyping was carried out using
12–36 primer pairs [26–28]. Paternities were determined using
Cervus 3.0 software using previously described procedures
[28]. Among these 65 individuals, 14 of them were born in cap-
tivity and 51 were born in the wild. We reconstructed the full
pedigree of individuals born in captivity going back as far as
the generation of unrelated founder animals [28]. We genetically
determined both parents for 43 individuals out of the 51 individ-
uals born in the wild. For the remaining eight animals, we only
knew the mother’s identity because the genetic sample did not
match any adult male of the genetic database. The study further
included six young individuals, born in the wild but never
captured, with an unambiguously known mother.

(e) Studied dyads
We considered groomee–groomer dyads meeting the following
criteria for each studied month:

(i) The groomer was observed at least once grooming the groo-
mee the corresponding year. For example: A and B were
not observed grooming each other in January 2015, we
therefore considered this data point (as a zero) only if A
and B were grooming partners this year (they groomed at
least once in 2015). If they were never observed grooming
each other in 2015, we did not consider them as grooming
partners that year (no corresponding data point).

(ii) At least one faecal sample was collected from the
groomee.

(iii) The total observation time of the groomee–groomer dyad
reached at least 30 min. To calculate the observation time
of the dyad, we summed-up the observation time of each
partner when the other partner was co-resident (i.e. both
individuals were present at the same time).
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Table 1. Effect of groomee’s protozoa richness on grooming received according to kinship. The reference dyad is indicated within parentheses. Significant test
statistics are highlighted in bold ( p< 0.05).

estimate s.e. z p-value

protozoa richness (non-kin) −1.04 0.33 −3.19 0.001

protozoa richness (low-kin) −1.63 0.40 −4.03 <0.001

protozoa richness (paternal half-siblings) −1.43 0.45 −3.18 0.001

protozoa richness (offspring–mother) −0.01 0.28 −0.02 0.99

protozoa richness (mother–offspring) −0.20 0.27 −0.73 0.47

protozoa richness (maternal half-siblings) 0.15 0.29 0.50 0.62

protozoa richness*dyad category:

protozoa richness*low-kin (non-kin) −0.59 0.51 −1.15 0.25

protozoa richness*paternal half-siblings (non-kin) −0.39 0.52 −0.76 0.45

protozoa richness*offspring–mother (non-kin) 1.04 0.43 2.44 0.015

protozoa richness*mother–offspring (non-kin) 0.94 0.41 2.29 0.022

protozoa richness*maternal half-siblings (non-kin) 1.18 0.43 2.73 0.006

age difference −0.02 0.04 −0.47 0.64

groomee’s sex (female): male 0.49 0.40 2.02 0.046

groomer’s sex (female): male −0.31 0.42 −0.73 0.47

groomee’s dominance rank (high): middle 1.15 0.67 1.72 0.085

groomee’s dominance rank (high): low 0.63 0.37 1.73 0.084

groomer’s dominance rank (high): middle −2.17 0.62 −3.53 <0.001

groomer’s dominance rank (high): low −0.81 0.36 −2.24 0.025
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(iv) Kinship was unambiguously determined. Parents of both
grooming partners were determined for 183 dyads. For 62
other dyads, the father of one grooming partner was
undetermined because the genetic sample did not match
any adult males from the genetic database. For six
dyads, the father of one grooming partner was unknown
because this grooming partner was not captured. How-
ever, in these six cases, grooming partners were not
paternal half-siblings because they were too different in
age (greater than 10 yr) to have the same father (mean
age difference = 14.1 yr).

We considered six different kin categories of grooming part-
ners: (i) ‘offspring–mother’ (i.e. the groomee is the offspring, the
groomer is the mother), (ii) ‘mother–offspring’, (iii) ‘maternal
half-siblings’, (iv) ‘paternal half-sibling’, (v) ‘low-kin’ and
(vi) ‘non-kin’. We considered as ‘low-kin’ dyads: offspring–
grandmother and grandmother–offspring, offspring–aunt/uncle
and aunt/uncle–offspring, and cousins. Low-kin dyads showed
therefore a relatedness coefficient superior or equal to 0.0625.
Following previously published procedure [29], the ‘non-kin’
category included all dyads for which the relatedness coefficient
was less than 0.0625 (mean± SEM=0.024 ± 0.001). The final data-
set included 251 different dyads of co-resident grooming
partners, including 34 ‘offspring–mother’, 40 ‘mother–offspring’,
36 ‘maternal half-siblings’, 19 ‘paternal half-sibling’, 56 ‘low-kin’,
and 66 ‘non-kin’. Full siblings (N= 3 dyads) were classified as
maternal half-siblings.
( f ) Statistical analyses
All data were analysed in R v. 3.5.3 (R Core Team, 2016).
(i) Are contagious groomees similarly avoided by all kin?
We performed a generalized linear mixed model (negative bino-
mial distribution for overdispersed count data, log link function,
N=1349) to analyse grooming time each individual (n= 61 groo-
mees) received per grooming partner (N= 66 groomers), per
month, as a function of groomee’s monthly protozoa richness
(continuous variable), kin category (‘offspring–mother’: N= 194,
‘mother–offspring’: N= 290, ‘maternal half-siblings’: N=263,
‘paternal half-siblings’: N=64, ‘low-kin’: N= 218, ‘non-kin’: N=
320), and the interaction between these two variables. We
compared the relative fits of the model with and without this
interaction using a likelihood ratio test (LRT). We controlled for
the absolute age difference between grooming partners, and
the sex and dominance rank of both grooming partners. To
adjust for variation in sampling effort, we included monthly
log-transformed observation time of the dyad as an offset vari-
able in the model. The dyad identity was further included as a
random effect to control for pseudo-replication. The model was
fitted using the package glmmADMB (R v. 3.5.0).
(ii) Which kin take the risk of grooming contagious partners?
We first split groomees into two categories according to their
protozoa richness: ‘low’ corresponded to individuals infected
by 0–3 protozoa taxa and ‘high’ corresponded to individuals
infected by 5–6 protozoa taxa. For these two classes of groomees,
we calculated the proportion of grooming time received from
each of the six defined kin category. We investigated whether
these proportions varied between ‘low’ and ‘high’ groomees’
protozoa richness across kin categories using exact Fisher tests.
These tests allowed analysis of the distribution of the proportions
of grooming received across the six kin categories defined.
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Figure 1. Effect of groomee’s protozoa richness on grooming rate received. For the sake of clarity, we represented mean and standard error of the mean of
grooming rate received from each kin category according to two levels of groomee’s protozoa richness: ‘low’ corresponds to groomees infected by 0–3 protozoa
taxa; ‘high’ corresponds to groomees infected by 5–6 protozoa taxa. Sample sizes are the number of dyad.month for each category. The corresponding statistical
model on grooming time as a function of kinship and groomee’s protozoa richness (expressed as a continuous variable), showed that only grooming received from
non-kin, low-kin and paternal half-siblings decreased with groomee’s protozoa richness.
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3. Results
(a) Are contagious groomees similarly avoided by all

kin?
The interaction term between groomee’s protozoa richness
and kinship significantly contributed to variation in groom-
ing time (ΔLogLik = 12.1, Df = 5, p< 0.001). In particular, the
relationship between groomee’s protozoa richness and
grooming received from non-kin partners significantly dif-
fered from the relationship between groomee’s protozoa
richness and grooming received from all maternal kin cat-
egories (non-kin versus mothers: b=1.04, p= 0.02; non-kin
versus offspring: b=0.94, p=0.02; non-kin versus maternal
half-siblings: b= 1.18, p<0.01; table 1). Grooming received
from non-kin partners, low-kin partners and paternal half-
siblings decreased with groomee’s protozoa richness (non-kin
partners: b=−1.04, p=0.001; low-kin: b=−1.63, p<0.001;
paternal half-siblings: b=−1.43, p=0.001; figure 1 and
table 1). By contrast, groomee’s protozoa richness did not influ-
ence grooming received from mothers, offspring and maternal
half-siblings (figure 1 and table 1). In other words, when
infected, mandrills are less groomed by their groupmates
except by their close maternal kin.

(b) Which kin take the risk of grooming contagious
partners?

We found that the proportion of grooming received from
non-kin partners, low-kin partners and paternal half-siblings
decreased when groomees were highly parasitized (non-kin:
13.3 versus 2.0%, p<0.001, 95% confidence interval (CI) =
0.12–0.14, odds ratio (OR) = 0.13; low-kin: 6.6 versus 0.7%, p
<0.001, CI = 0.08–0.12, OR= 0.10; paternal half-siblings: 3.3
versus 0.4%, p<0.001, CI = 0.08–0.13, OR=0.10; figure 2).
By contrast, the proportion of grooming received from
mothers, offspring and maternal half-siblings increased
in highly parasitized groomees (mothers: 42.0 versus 33.7%,
p<0.01, CI=1.37–1.48, OR=1.42; offspring: 34.7 versus 25.8%,
p<0.001, CI=1.47–1.59, OR=1.53; maternal half-siblings:
20.2 versus 17.3%, p<0.001, CI=1.16–1.28, OR=1.22).



royalsocietypublishing.org/journal/rsbl
Biol.Lett.16:20190869

5
Only close maternal kin continue to groom individuals that
are highly parasitized, providing almost all grooming events
(96.9%; figure 2).

4. Discussion
In this study, we showed that mandrills avoid grooming con-
tagious groupmates except their close maternal kin, even
when highly parasitized. Flexibility in social avoidance is
expected to evolve if the social benefits of interacting with
some individuals outweigh parasite costs. In matrilineal pri-
mate societies such as mandrills, highly differentiated social
bonds usually occur among closely related groupmates
[29,30]. These social bonds show adaptive values. More
socially integrated female mandrills give their first birth on
average a year before less socially integrated females [30].
Yellow baboon females (Papio cynocephalus) that are the
most socially connected to their mothers, adult daughters
and maternal siblings have highest offspring survival rates
[29]. Additionally, because grooming close kin might alleviate
physiological stress more efficiently, susceptibility to para-
sites might also be decreased when interacting with these
partners, as shown in macaques (Macaca mulatta) [19,31].
Avoiding close maternal kin as grooming partners, even if
highly contagious, may therefore have more detrimental
social effects, for both the groomer and the groomee, than
hygienic or physiological benefits.

Future research is required to understand the proximate
mechanism allowing such flexibility. While we still have
little understanding of the underlying cognitive processes
involved in social avoidance, we know that disease recog-
nition is based on the detection of multiple symptoms
including behavioural modifications [32], appearance
changes [33] or olfactory cues [8]. In mandrills, olfaction is
at least one of the proximate mechanisms used to avoid con-
tagious partners: during behavioural tests, individuals
distinguished non-parasitized from parasitized conspecifics
using faecal odorants [8]. We suggest that kinship may
modulate this detection mechanism, decreasing sensitivity
to pathogenic odour cues when associated with close
maternal kin. While body fluids are usually perceived as
pathogenic cues parents feel little disgust towards their own
baby’s vomit, urine and faeces and experience less disgust
towards their own baby’s diaper than another diaper even
when unaware of the diaper’s origin [34].

Altogether, these findings shed light on a subtle behav-
ioural defence strategy, allowing decreasing parasite risk
related to frequent and close social interactions while main-
taining social bonds with close maternal kin. The evolution
of such behavioural flexibility towards diseased individuals
has certainly had a broad impact on social evolution. In the
human lineage, it has been suggested that caring for ill indi-
viduals likely emerged along kin networks and is possibly
derived from grooming behaviours, because the costs of con-
tact with pathogens may have been compensated by fitness
benefits obtained through care-giving to close kin [12].
Further investigations on the role played by individual’s
health status and disease recognition in relation to kinship
on the patterns of social interactions should improve our
understanding of social evolution processes.
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